

Course Outline

Course number	RBA201			
Course title	Mathematics for So	ocial Sc	tiences	
Credit points	3 ECTS (2 CP)			
Total hours	30			
Lecture hours	15			
Seminar and other hours	15			
Course level	Bachelor			
Prerequisites	None			
Category	Mandatory	X	Restricted elective	Free elective

COURSE RESPONSIBLE

Name	Academic degree	Academic position
Prof. Dr. Dr. h.c. Dirk Linowski	PhD	Lecturer

COURSE ABSTRACT

The course covers the basic mathematical processes and techniques currently used in the fields of business and finance. It intends to provide the basic skills of linear algebra as of calculus such that the student is enabled to treat linear equation systems and to formulate and solve simple optimimization problems.

COURSE OBJECTIVES

Presenting mathematics as a tool to describe economic, financial and social trends in an effective and universally accessible way;

Providing students the analytical skills in order to comfortably approach the study of formalised disciplines such as Microeconomics, Macroeconomics, Business and Finance;

GRADING CRITERIA

Criteria	Weighting
Exam	100%

COURSE PLAN – MAIN SUBJECTS

No.	Main subjects	Planned hours
1	Algebra	5
2	Equations	5
3	Vectors and Matrices and applications with Excel	6
4	The Nature of optimization problems	4
5	Univariate Calculus	6

6	Multivariate calculus	2
7	Anti-Calculus	2

COURSE PLAN – SESSIONS

Session	Session subjects and readings	Lecture/seminar
1	Numbers, operations, integer powers, rules of algebra	L/S
2	Fractions, percentages, fractional powers, intervals and absolute values	L/S
3	Simple equations, parameters, quadratic equations	L/S
4	Linear and non-linear equations	L/S
5	Revision, Q&A	L/S
6	Vectors and matrices: definitions and operations	L/S
7	Quadratic matrices, inverse matrices, determinants	L/S
8	Solving equation systems with MS-Excel	L/S
9	Intro optimization: Restricted vs. unrestricted problems	L/S
10	Lagrange multipliers. An example of a non-linear problem solved with MS-Excel	L/S
11	Sequences, series and functions	L/S
12	Derivatives of univariate functions, minima and maxima	L/S
13	Derivatives of multivariate variate functions	L/S
14	Intro Anti-Calculus	L/S
15	Exercise Anti-calculus, Q&A	L/S

COURSE LITERATURE

No.	Author, title, publisher
1	K. Sydsæter, P. Hammond, "Essential Mathematics for Economic Analysis", Pearson 2012